The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities RJ Gardner, D Hug, W Weil Journal of Differential Geometry 97 (3), 427-476, 2014 | 242 | 2014 |
On the Lp Minkowski problem for polytopes D Hug, E Lutwak, D Yang, G Zhang Discrete & Computational Geometry 33 (4), 699-715, 2005 | 220 | 2005 |
Minkowski tensor shape analysis of cellular, granular and porous structures GE Schröder‐Turk, W Mickel, SC Kapfer, MA Klatt, FM Schaller, ... Advanced Materials 23 (22‐23), 2535-2553, 2011 | 185 | 2011 |
Minkowski tensors of anisotropic spatial structure GE Schröder-Turk, W Mickel, SC Kapfer, FM Schaller, B Breidenbach, ... New Journal of Physics 15 (8), 083028, 2013 | 160 | 2013 |
A local Steiner–type formula for general closed sets and applications D Hug, G Last, W Weil Mathematische Zeitschrift 246, 237-272, 2004 | 123 | 2004 |
Operations between sets in geometry RJ Gardner, D Hug, W Weil Journal of the European Mathematical Society 15 (6), 2297-2352, 2013 | 115 | 2013 |
Contributions to affine surface area D Hug manuscripta mathematica 91, 283-301, 1996 | 108 | 1996 |
The dual Orlicz–Brunn–Minkowski theory RJ Gardner, D Hug, W Weil, D Ye Journal of Mathematical Analysis and Applications 430 (2), 810-829, 2015 | 107 | 2015 |
Random polytopes D Hug Stochastic Geometry, Spatial Statistics and Random Fields: Asymptotic …, 2012 | 96 | 2012 |
General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem I RJ Gardner, D Hug, W Weil, S Xing, D Ye Calculus of Variations and Partial Differential Equations 58 (1), 12, 2019 | 95 | 2019 |
Intrinsic volumes and polar sets in spherical space F Gao, D Hug, R Schneider Math. Inst., 2003 | 88 | 2003 |
Integral geometry of tensor valuations D Hug, R Schneider, R Schuster Advances in Applied Mathematics 41 (4), 482-509, 2008 | 80 | 2008 |
Lectures on convex geometry D Hug, W Weil Springer, 2020 | 75 | 2020 |
The space of isometry covariant tensor valuations D Hug, R Schneider, R Schuster St. Petersburg Mathematical Journal 19 (1), 137-158, 2008 | 75 | 2008 |
General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II RJ Gardner, D Hug, S Xing, D Ye Calculus of Variations and Partial Differential Equations 59 (1), 15, 2020 | 66 | 2020 |
Curvature relations and affine surface area for a general convex body and its polar D Hug Results in Mathematics 29, 233-248, 1996 | 62 | 1996 |
The limit shape of the zero cell in a stationary Poisson hyperplane tessellation D Hug, M Reitzner, R Schneider The Annals of Probability 32 (1B), 1140-1167, 2004 | 61 | 2004 |
Asymptotic shapes of large cells in random tessellations D Hug, R Schneider GAFA Geometric And Functional Analysis 17 (1), 156-191, 2007 | 59 | 2007 |
Kinematic formulas for tensor valuations A Bernig, D Hug Journal für die reine und angewandte Mathematik (Crelles Journal) 2018 (736 …, 2018 | 57 | 2018 |
Second-order properties and central limit theorems for geometric functionals of Boolean models D Hug, G Last, M Schulte | 57 | 2016 |