The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping A Zwanenburg, M Valličres, MA Abdalah, HJWL Aerts, V Andrearczyk, ... Radiology 295 (2), 328-338, 2020 | 3106 | 2020 |
Image biomarker standardisation initiative A Zwanenburg, S Leger, M Valličres, S Löck arXiv preprint arXiv:1612.07003, 2016 | 472 | 2016 |
Using filter banks in convolutional neural networks for texture classification V Andrearczyk, PF Whelan Pattern Recognition Letters 84, 63-69, 2016 | 321 | 2016 |
Head and neck tumor segmentation in PET/CT: the HECKTOR challenge V Oreiller, V Andrearczyk, M Jreige, S Boughdad, H Elhalawani, J Castelli, ... Medical image analysis 77, 102336, 2022 | 207 | 2022 |
Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images V Andrearczyk, V Oreiller, S Boughdad, CCL Rest, H Elhalawani, ... 3D head and neck tumor segmentation in PET/CT challenge, 1-37, 2021 | 197 | 2021 |
Making radiomics more reproducible across scanner and imaging protocol variations: a review of harmonization methods SA Mali, A Ibrahim, HC Woodruff, V Andrearczyk, H Müller, S Primakov, ... Journal of personalized medicine 11 (9), 842, 2021 | 143 | 2021 |
Concept attribution: Explaining CNN decisions to physicians M Graziani, V Andrearczyk, S Marchand-Maillet, H Müller Computers in biology and medicine 123, 103865, 2020 | 113 | 2020 |
A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences M Graziani, L Dutkiewicz, D Calvaresi, JP Amorim, K Yordanova, M Vered, ... Artificial intelligence review 56 (4), 3473-3504, 2023 | 109 | 2023 |
Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT V Andrearczyk, V Oreiller, M Jreige, M Vallieres, J Castelli, H Elhalawani, ... Head and Neck Tumor Segmentation: First Challenge, HECKTOR 2020, Held in …, 2021 | 109 | 2021 |
Regression concept vectors for bidirectional explanations in histopathology M Graziani, V Andrearczyk, H Müller Understanding and Interpreting Machine Learning in Medical Image Computing …, 2018 | 108 | 2018 |
Automatic segmentation of head and neck tumors and nodal metastases in PET-CT scans V Andrearczyk, V Oreiller, M Valličres, J Castelli, H Elhalawani, M Jreige, ... Medical imaging with deep learning, 33-43, 2020 | 87 | 2020 |
Convolutional neural network on three orthogonal planes for dynamic texture classification V Andrearczyk, PF Whelan Pattern Recognition 76, 36-49, 2018 | 86 | 2018 |
Overview of ImageCLEF 2018: Challenges, datasets and evaluation B Ionescu, H Müller, M Villegas, A García Seco de Herrera, C Eickhoff, ... Experimental IR Meets Multilinguality, Multimodality, and Interaction: 9th …, 2018 | 85 | 2018 |
Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology S Otálora, M Atzori, V Andrearczyk, A Khan, H Müller Frontiers in bioengineering and biotechnology 7, 198, 2019 | 79 | 2019 |
Overview of the ImageCLEF 2018 caption prediction tasks A García Seco de Herrera, C Eickhof, V Andrearczyk, H Müller Working Notes of CLEF 2018-Conference and Labs of the Evaluation Forum (CLEF …, 2018 | 67 | 2018 |
The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights P Whybra, A Zwanenburg, V Andrearczyk, R Schaer, AP Apte, A Ayotte, ... Radiology 310 (2), e231319, 2024 | 62 | 2024 |
Standardised convolutional filtering for radiomics A Depeursinge, V Andrearczyk, P Whybra, J van Griethuysen, H Müller, ... arXiv preprint arXiv:2006.05470, 2020 | 49 | 2020 |
Deep Learning in Texture Analysis and its Application to Tissue Image Classification V Andrearczyk, P Whelan Biomedical Texture Analysis: Fundamentals, Applications, Tools and …, 2017 | 48 | 2017 |
An exploration of uncertainty information for segmentation quality assessment K Hoebel, V Andrearczyk, A Beers, J Patel, K Chang, A Depeursinge, ... Medical Imaging 2020: Image Processing 11313, 381-390, 2020 | 47 | 2020 |
Glaucoma diagnosis from eye fundus images based on deep morphometric feature estimation O Perdomo, V Andrearczyk, F Meriaudeau, H Müller, FA González Computational Pathology and Ophthalmic Medical Image Analysis: First …, 2018 | 40 | 2018 |