Follow
AkshatKumar Nigam
Title
Cited by
Cited by
Year
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
M Krenn, F Hase, AK Nigam, P Friederich, A Aspuru-Guzik
Machine Learning: Science and Technology, 2020
8782020
Data-driven strategies for accelerated materials design
R Pollice, G dos Passos Gomes, M Aldeghi, RJ Hickman, M Krenn, ...
Accounts of Chemical Research 54 (4), 849-860, 2021
3062021
On scientific understanding with artificial intelligence
M Krenn, R Pollice, SY Guo, M Aldeghi, A Cervera-Lierta, P Friederich, ...
Nature Reviews Physics 4 (12), 761-769, 2022
2202022
A comprehensive discovery platform for organophosphorus ligands for catalysis
T Gensch, G dos Passos Gomes, P Friederich, E Peters, T Gaudin, ...
Journal of the American Chemical Society, 2021
2042021
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AK Nigam, P Friederich, M Krenn, A Aspuru-Guzik
International Conference on Learning Representations (ICLR)., 2020
1582020
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
AK Nigam, R Pollice, M Krenn, G dos Passos Gomes, A Aspuru-Guzik
Chemical science 12 (20), 7079-7090, 2021
1482021
SELFIES and the future of molecular string representations
M Krenn, Q Ai, S Barthel, N Carson, A Frei, NC Frey, P Friederich, ...
Patterns 3 (10), 2022
1362022
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
AK Nigam, R Pollice, A Aspuru-Guzik
Digital Discovery 1 (4), 390-404, 2022
75*2022
Assigning confidence to molecular property prediction
AK Nigam, R Pollice, MFD Hurley, RJ Hickman, M Aldeghi, N Yoshikawa, ...
Expert opinion on drug discovery 16 (9), 1009-1023, 2021
572021
Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning
LA Thiede, M Krenn, AK Nigam, A Aspuru-Guzik
Machine Learning: Science and Technology 3 (3), 035008, 2020
49*2020
Tartarus: A benchmarking platform for realistic and practical inverse molecular design
AK Nigam, R Pollice, G Tom, K Jorner, LA Thiede, A Kundaje, ...
37th Conference on Neural Information Processing Systems (NeurIPS 2023 …, 2023
272023
Deciphering the impact of genomic variation on function
Code of Conduct Committee (alphabetical by last name) Cody Sarah 33 Farrell ...
Nature 633 (8028), 47-57, 2024
13*2024
Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network
AK Nigam, R Pollice, P Friederich, A Aspuru-Guzik
Chemical Science 15 (7), 2618-2639, 2024
132024
Virtualflow 2.0-the next generation drug discovery platform enabling adaptive screens of 69 billion molecules
C Gorgulla, AK Nigam, M Koop, S Selim Çınaroğlu, C Secker, ...
bioRxiv, 2023.04. 25.537981, 2023
102023
Recent advances in the Self-Referencing Embedding Strings (SELFIES) library
A Lo, R Pollice, AK Nigam, AD White, M Krenn, A Aspuru-Guzik
Digital Discovery 2, 897-908, 2023
9*2023
An SLC12A9-dependent ion transport mechanism maintains lysosomal osmolarity
R Levin-Konigsberg, K Mitra, K Spees, AK Nigam, K Liu, C Januel, ...
Developmental Cell, 2024
6*2024
Quantum computing-enhanced algorithm unveils novel inhibitors for KRAS
MG Vakili, C Gorgulla, AK Nigam, D Bezrukov, D Varoli, A Aliper, ...
arXiv preprint arXiv:2402.08210, 2024
62024
Application of established computational techniques to identify potential SARS-CoV-2 Nsp14-MTase inhibitors in low data regimes
AK Nigam, MFD Hurley, F Li, E Konkoľová, M Klíma, J Trylčová, R Pollice, ...
Digital Discovery, 2024
4*2024
Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines
N Kusanda, G Tom, R Hickman, AK Nigam, K Jorner, A Aspuru-Guzik
AI for Accelerated Materials Design NeurIPS 2022 Workshop, 2022
32022
Exploring the chemical space without bias: data-free molecule generation with DQN and SELFIES
T Gaudin, AK Nigam, A Aspuru-Guzik
NeurIPS-2019 MLPS Workshop, 0
3*
The system can't perform the operation now. Try again later.
Articles 1–20