Folgen
Brian Hou
Brian Hou
Bestätigte E-Mail-Adresse bei cs.uw.edu
Titel
Zitiert von
Zitiert von
Jahr
Dex-net 1.0: A cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit model with correlated rewards
J Mahler, FT Pokorny, B Hou, M Roderick, M Laskey, M Aubry, K Kohlhoff, ...
2016 IEEE international conference on robotics and automation (ICRA), 1957-1964, 2016
4412016
Bayesian policy optimization for model uncertainty
G Lee, B Hou, A Mandalika, J Lee, S Choudhury, SS Srinivasa
arXiv preprint arXiv:1810.01014, 2018
512018
Problems before solutions: Automated problem clarification at scale
S Basu, A Wu, B Hou, J DeNero
Proceedings of the Second (2015) ACM Conference on Learning@ Scale, 205-213, 2015
272015
Fuzz testing projects in massive courses
S Sridhara, B Hou, J Lu, J DeNero
Proceedings of the Third (2016) ACM Conference on Learning@ Scale, 361-367, 2016
262016
Sample-efficient learning of nonprehensile manipulation policies via physics-based informed state distributions
L Pinto, A Mandalika, B Hou, S Srinivasa
arXiv preprint arXiv:1810.10654, 2018
172018
Efficient motion planning for problems lacking optimal substructure
O Salzman, B Hou, S Srinivasa
Proceedings of the International Conference on Automated Planning and …, 2017
162017
Privacy-preserving grasp planning in the cloud
J Mahler, B Hou, S Niyaz, FT Pokorny, R Chandra, K Goldberg
2016 IEEE International Conference on Automation Science and Engineering …, 2016
162016
Posterior sampling for anytime motion planning on graphs with expensive-to-evaluate edges
B Hou, S Choudhury, G Lee, A Mandalika, SS Srinivasa
2020 IEEE International Conference on Robotics and Automation (ICRA), 4266-4272, 2020
132020
Guided incremental local densification for accelerated sampling-based motion planning
A Mandalika, R Scalise, B Hou, S Choudhury, SS Srinivasa
arXiv preprint arXiv:2104.05037, 2021
112021
Bayesian residual policy optimization:: Scalable bayesian reinforcement learning with clairvoyant experts
G Lee, B Hou, S Choudhury, SS Srinivasa
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021
92021
Stein variational probabilistic roadmaps
A Lambert, B Hou, R Scalise, SS Srinivasa, B Boots
2022 International Conference on Robotics and Automation (ICRA), 11094-11101, 2022
82022
GuILD: Guided Incremental Local Densification for Accelerated Sampling-based Motion Planning
R Scalise, A Mandalika, B Hou, S Choudhury, SS Srinivasa
2023 IEEE International Conference on Robotics and Automation (ICRA), 10212 …, 2023
32023
Dynamic replanning with posterior sampling
B Hou, SS Srinivasa
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022
22022
Multi-Sample Long Range Path Planning under Sensing Uncertainty for Off-Road Autonomous Driving
M Schmittle, R Baijal, B Hou, S Srinivasa, B Boots
arXiv preprint arXiv:2403.11298, 2024
12024
Robot Motion Planning with Uncertainty and Urgency
B Hou
University of Washington, 2023
12023
Deep conditional generative models for heuristic search on graphs with expensive-to-evaluate edges
B Hou, S Srinivasa
Online]. Avail-able: https://personalrobotics. cs. washington. edu/workshops …, 0
1
Bayes-CPACE: PAC Optimal Exploration in Continuous Space Bayes-Adaptive Markov Decision Processes
G Lee, S Choudhury, B Hou, SS Srinivasa
arXiv preprint arXiv:1810.03048, 2018
2018
Bayesian Residual Policy Optimization
G Lee, B Hou, S Choudhury, SS Srinivasa
Residual Bayesian Q-Learning for Meta-Reinforcement Learning with Experts
G Lee, S Choudhury, B Hou, SS Srinivasa
Collision Posteriors on Graphs with Expensive-to-Evaluate Edges
B Hou, S Choudhury, G Lee, M Barnes, SS Srinivasa
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20