Folgen
Hengtao He (何恒涛)
Hengtao He (何恒涛)
Research Assistant Professor, Department of ECE, The Hong Kong University of Science and Technology
Bestätigte E-Mail-Adresse bei seu.edu.cn - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Deep learning-based channel estimation for beamspace mmWave massive MIMO systems
H He, CK Wen, S Jin, GY Li
IEEE Wireless Communications Letters 7 (5), 852-855, 2018
7742018
Model-driven deep learning for physical layer communications
H He, S Jin, CK Wen, F Gao, GY Li, Z Xu
IEEE Wireless Communications 26 (5), 77-83, 2019
4432019
Model-driven deep learning for MIMO detection
H He, CK Wen, S Jin, GY Li
IEEE Transactions on Signal Processing 68, 1702-1715, 2020
3962020
A model-driven deep learning network for MIMO detection
H He, CK Wen, S Jin, GY Li
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP …, 2018
3142018
Cell-free massive MIMO for 6G wireless communication networks
H He, X Yu, J Zhang, S Song, KB Letaief
Journal of Communications and Information Networks 6 (4), 321-335, 2021
922021
Bayesian optimal data detector for hybrid mmWave MIMO-OFDM systems with low-resolution ADCs
H He, CK Wen, S Jin
IEEE Journal of Selected Topics in Signal Processing 12 (3), 469-483, 2018
882018
Generalized expectation consistent signal recovery for nonlinear measurements
H He, CK Wen, S Jin
2017 IEEE International Symposium on Information Theory (ISIT), 2333-2337, 2017
592017
Beamspace channel estimation for wideband millimeter-wave MIMO: A model-driven unsupervised learning approach
H He, R Wang, W Jin, S Jin, CK Wen, GY Li
IEEE Transactions on Wireless Communications 22 (3), 1808-1822, 2022
47*2022
An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation
W Yu, Y Shen, H He, X Yu, S Song, J Zhang, KB Letaief
IEEE Journal of Selected Topics in Signal Processing 17 (4), 761-776, 2023
372023
Deep learning based on orthogonal approximate message passing for CP-free OFDM
J Zhang, H He, CK Wen, S Jin, GY Li
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
332019
Hybrid far-and near-field channel estimation for THz ultra-massive MIMO via fixed point networks
W Yu, Y Shen, H He, X Yu, J Zhang, KB Letaief
GLOBECOM 2022-2022 IEEE Global Communications Conference, 5384-5389, 2022
272022
Model-driven deep learning for massive MU-MIMO with finite-alphabet precoding
H He, M Zhang, S Jin, CK Wen, GY Li
IEEE Communications Letters 24 (10), 2216-2220, 2020
232020
Distributed expectation propagation detection for cell-free massive MIMO
H He, H Wang, X Yu, J Zhang, SH Song, KB Letaief
2021 IEEE Global Communications Conference (GLOBECOM), 01-06, 2021
202021
Adaptive channel estimation based on model-driven deep learning for wideband mmWave systems
W Jin, H He, CK Wen, S Jin, GY Li
2021 IEEE Global Communications Conference (GLOBECOM), 1-6, 2021
202021
Model-driven deep learning for massive multiuser MIMO constant envelope precoding
Y He, H He, CK Wen, S Jin
IEEE Wireless Communications Letters 9 (11), 1835-1839, 2020
192020
Channel estimation for millimeter wave massive MIMO systems with low-resolution ADCs
R Wang, H He, S Jin, X Wang, X Hou
2019 IEEE 20th International Workshop on Signal Processing Advances in …, 2019
162019
Graph neural network enhanced approximate message passing for MIMO detection
H He, A Kosasih, X Yu, J Zhang, SH Song, W Hardjawana, KB Letaief
arXiv preprint arXiv:2205.10620, 2022
12*2022
Task-oriented communication with out-of-distribution detection: An information bottleneck framework
H Li, W Yu, H He, J Shao, S Song, J Zhang, KB Letaief
GLOBECOM 2023-2023 IEEE Global Communications Conference, 3136-3141, 2023
82023
Message passing meets graph neural networks: A new paradigm for massive MIMO systems
H He, X Yu, J Zhang, S Song, KB Letaief
IEEE Transactions on Wireless Communications, 2023
82023
Deep Learning-Based Adaptive Joint Source-Channel Coding using Hypernetworks
S Xie, H He, H Li, S Song, J Zhang, YJA Zhang, KB Letaief
arXiv preprint arXiv:2401.11155, 2024
52024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20