Folgen
Mehdi Vafakhah
Mehdi Vafakhah
Associate Professor of Watershed Mangement, Tarbiat Modares University
Bestätigte E-Mail-Adresse bei modares.ac.ir - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function …
M Zare, HR Pourghasemi, M Vafakhah, B Pradhan
Arabian Journal of Geosciences 6, 2873-2888, 2013
4192013
A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
V Moosavi, M Vafakhah, B Shirmohammadi, N Behnia
Water resources management 27, 1301-1321, 2013
2582013
Application of several data-driven techniques for predicting groundwater level
B Shirmohammadi, M Vafakhah, V Moosavi, A Moghaddamnia
Water Resources Management 27, 419-432, 2013
1752013
Development and analysis of the Soil Water Infiltration Global database
M Rahmati, L Weihermüller, J Vanderborght, YA Pachepsky, L Mao, ...
Earth System Science Data 10 (3), 1237-1263, 2018
1362018
Flood susceptibility assessment using extreme gradient boosting (EGB), Iran
S Mirzaei, M Vafakhah, B Pradhan, SJ Alavi
Earth Science Informatics 14, 51-67, 2021
832021
Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting
V Moosavi, M Vafakhah, B Shirmohammadi, M Ranjbar
Arabian Journal for Science and Engineering 39, 1785-1796, 2014
742014
Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting
M Vafakhah
Canadian Journal of Civil Engineering 39 (4), 402-414, 2012
652012
Improving runoff behavior resulting from direct inoculation of soil micro-organisms
SH Sadeghi, H Kheirfam, M Homaee, BZ Darki, M Vafakhah
Soil and Tillage Research 171, 35-41, 2017
642017
Spatiotemporal mapping of rainfall erosivity index for different return periods in Iran
SH Sadeghi, M Zabihi, M Vafakhah, Z Hazbavi
Natural Hazards 87, 35-56, 2017
642017
Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping
M Vafakhah, S Mohammad Hasani Loor, H Pourghasemi, A Katebikord
Arabian Journal of Geosciences 13, 1-16, 2020
572020
Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran
E Sharifi Garmdareh, M Vafakhah, SS Eslamian
Hydrological sciences journal 63 (3), 426-440, 2018
572018
Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting
M Vafakhah
Arabian Journal of Geosciences 6, 3003-3018, 2013
562013
Evaluating the support vector machine for suspended sediment load forecasting based on gamma test
S Rashidi, M Vafakhah, EK Lafdani, MR Javadi
Arabian Journal of Geosciences 9, 1-15, 2016
552016
Regional flood frequency analysis through some machine learning models in semi-arid regions
P Allahbakhshian-Farsani, M Vafakhah, H Khosravi-Farsani, E Hertig
Water Resources Management 34, 2887-2909, 2020
432020
Flood hazard mapping using synthesis hydraulic and geomorphic properties at watershed scale
A Motevalli, M Vafakhah
Stochastic Environmental Research and Risk Assessment 30, 1889-1900, 2016
422016
Hydrology modelling in Taleghan mountainous watershed using SWAT
H Noor, M Vafakhah, M Taheriyoun, M Moghadasi
Journal of Water and Land Development, 2014
422014
Rainfall–runoff modeling using support vector machine in snow-affected watershed
F Sedighi, M Vafakhah, MR Javadi
Arabian Journal for Science and Engineering 41 (10), 4065-4076, 2016
412016
Water Resources Management Through Flood Spreading Project Suitability Mapping Using Frequency Ratio, k-nearest Neighbours, and Random Forest Algorithms
SA Naghibi, M Vafakhah, H Hashemi, B Pradhan, SJ Alavi
Natural Resources Research 29, 1915-1933, 2020
402020
Which one is more important in daily runoff forecasting using data driven models: Input data, model type, preprocessing or data length?
V Moosavi, ZG Fard, M Vafakhah
Journal of Hydrology 606, 127429, 2022
332022
Novel Bayesian additive regression tree methodology for flood susceptibility modeling
S Janizadeh, M Vafakhah, Z Kapelan, NM Dinan
Water Resources Management 35, 4621-4646, 2021
332021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20