Going deeper with convolutions C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ... Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 62874 | 2015 |
Batch normalization: Accelerating deep network training by reducing internal covariate shift S Ioffe arXiv preprint arXiv:1502.03167, 2015 | 58030 | 2015 |
Ssd: Single shot multibox detector W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 41370 | 2016 |
Rethinking the inception architecture for computer vision C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 35481 | 2016 |
Explaining and harnessing adversarial examples IJ Goodfellow, J Shlens, C Szegedy arXiv preprint arXiv:1412.6572, 2014 | 22281 | 2014 |
Inception-v4, inception-resnet and the impact of residual connections on learning C Szegedy, S Ioffe, V Vanhoucke, A Alemi Proceedings of the AAAI conference on artificial intelligence 31 (1), 2017 | 17757 | 2017 |
Intriguing properties of neural networks C Szegedy arXiv preprint arXiv:1312.6199, 2013 | 17522 | 2013 |
Deeppose: Human pose estimation via deep neural networks A Toshev, C Szegedy Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 3900 | 2014 |
Deep neural networks for object detection C Szegedy, A Toshev, D Erhan Advances in neural information processing systems 26, 2013 | 2059 | 2013 |
European conference on computer vision W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg Face detection with end-to-end integration of a convnet and a 3d model, 2016 | 1805 | 2016 |
Scalable object detection using deep neural networks D Erhan, C Szegedy, A Toshev, D Anguelov Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 1605 | 2014 |
Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015 S Ioffe, C Szegedy arXiv preprint arXiv:1502.03167, 2015 | 1253 | 2015 |
Training deep neural networks on noisy labels with bootstrapping S Reed, H Lee, D Anguelov, C Szegedy, D Erhan, A Rabinovich arXiv preprint arXiv:1412.6596, 2014 | 1184 | 2014 |
Scalable, high-quality object detection C Szegedy, S Reed, D Erhan, D Anguelov, S Ioffe arXiv preprint arXiv:1412.1441, 2014 | 559 | 2014 |
Going deeper with convolutions. arXiv 2014 C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ... arXiv preprint arXiv:1409.4842 1409, 2015 | 519 | 2015 |
Intriguing properties of neural networks. arXiv 2013 C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, ... arXiv preprint arXiv:1312.6199 103, 2013 | 381 | 2013 |
Inception-v4 C Szegedy, S Ioffe, V Vanhoucke, A Alemi Inception-ResNet and the impact of residual connections on learning 1602, 2016 | 373 | 2016 |
Deepmath-deep sequence models for premise selection G Irving, C Szegedy, AA Alemi, N Eén, F Chollet, J Urban Advances in neural information processing systems 29, 2016 | 281* | 2016 |
Rethinking the inception architecture for computer vision. 2015 C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna arXiv preprint arXiv:1512.00567, 2015 | 265 | 2015 |
Computer vision—ECCV 2016 W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11-14, 2016 | 228 | 2016 |