From multiscale modeling to meso-science J Li, W Ge, W Wang, N Yang, X Liu, L Wang, X He, X Wang, J Wang, ... Springer-Verlag Berlin and Heidelberg GmbH & Company KG, 2013 | 208 | 2013 |
Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm W Ge, W Wang, N Yang, J Li, M Kwauk, F Chen, J Chen, X Fang, L Guo, ... Chemical Engineering Science 66 (19), 4426-4458, 2011 | 163 | 2011 |
Large-scale DNS of gas–solid flows on Mole-8.5 Q Xiong, B Li, G Zhou, X Fang, J Xu, J Wang, X He, X Wang, L Wang, ... Chemical Engineering Science 71, 422-430, 2012 | 155 | 2012 |
Analytical multi-scale method for multi-phase complex systems in process engineering—Bridging reductionism and holism W Ge, F Chen, J Gao, S Gao, J Huang, X Liu, Y Ren, Q Sun, L Wang, ... Chemical Engineering Science 62 (13), 3346-3377, 2007 | 120 | 2007 |
Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application W Ge, L Wang, J Xu, F Chen, G Zhou, L Lu, Q Chang, J Li Reviews in Chemical Engineering 33 (6), 551-623, 2017 | 101 | 2017 |
Structure-dependent drag in gas–solid flows studied with direct numerical simulation G Zhou, Q Xiong, L Wang, X Wang, X Ren, W Ge Chemical Engineering Science 116, 9-22, 2014 | 73 | 2014 |
Direct numerical simulation of particle–fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method L Wang, G Zhou, X Wang, Q Xiong, W Ge Particuology 8 (4), 379-382, 2010 | 68 | 2010 |
Lattice Boltzmann based discrete simulation for gas–solid fluidization L Wang, B Zhang, X Wang, W Ge, J Li Chemical Engineering Science 101, 228-239, 2013 | 66 | 2013 |
Meso‐scale statistical properties of gas–solid flow—a direct numerical simulation (DNS) study X Liu, L Wang, W Ge AIChE Journal 63 (1), 3-14, 2017 | 63 | 2017 |
An approach for drag correction based on the local heterogeneity for gas–solid flows T Li, L Wang, W Rogers, G Zhou, W Ge AIChE Journal 63 (4), 1203-1212, 2017 | 57 | 2017 |
Efficient parallel implementation of the lattice Boltzmann method on large clusters of graphic processing units QG Xiong, B Li, J Xu, XJ Fang, XW Wang, LM Wang, XF He, W Ge Chinese Science Bulletin 57, 707-715, 2012 | 55 | 2012 |
Efficient 3D DNS of gas–solid flows on Fermi GPGPU Q Xiong, B Li, J Xu, X Wang, L Wang, W Ge Computers & Fluids 70, 86-94, 2012 | 49 | 2012 |
Scale and structure dependent drag in gas–solid flows X Liu, W Ge, L Wang AIChE Journal 66 (4), e16883, 2020 | 45 | 2020 |
Lattice Boltzmann method for shape optimization of fluid distributor L Wang, Y Fan, L Luo Computers & Fluids 94, 49-57, 2014 | 42 | 2014 |
Heuristic optimality criterion algorithm for shape design of fluid flow L Wang, Y Fan, L Luo Journal of Computational Physics 229 (20), 8031-8044, 2010 | 39 | 2010 |
A CFD Simulation of 3D Air Flow and Temperature Variation in Refrigeration Cabinet L Wang, L Zhang, G Lian Procedia Engineering 102, 1599-1611, 2015 | 38 | 2015 |
A simplified two-fluid model coupled with EMMS drag for gas-solid flows X Qiu, L Wang, N Yang, J Li Powder Technology 314, 299-314, 2017 | 36 | 2017 |
Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark L Lu, X Liu, T Li, L Wang, W Ge, S Benyahia Powder Technology 321, 301-309, 2017 | 34 | 2017 |
A new wall boundary condition in particle methods L Wang, W Ge, J Li Computer physics communications 174 (5), 386-390, 2006 | 33 | 2006 |
Effect of particle clusters on mass transfer between gas and particles in gas-solid flows L Wang, C Wu, W Ge Powder Technology 319, 221-227, 2017 | 31 | 2017 |