An example of infinite dimensional quasi-helix C Houdré, J Villa Contemporary Mathematics 336, 195-202, 2003 | 219 | 2003 |

The numerical solution of a generalized Burgers–Huxley equation through a conditionally bounded and symmetry-preserving method JE Macías-Díaz, J Ruiz-Ramírez, J Villa Computers & Mathematics with Applications 61 (11), 3330-3342, 2011 | 51 | 2011 |

A deterministic model for the distribution of the stopping time in a stochastic equation and its numerical solution JE Macías-Díaz, J Villa-Morales Journal of Computational and Applied Mathematics 318, 93-106, 2017 | 37 | 2017 |

Blow-up for a system with time-dependent generators A Perez, J Villa Alea 7, 207-215, 2010 | 20 | 2010 |

An Osgood criterion for integral equations with applications to stochastic differential equations with an additive noise JA León, J Villa Statistics & probability letters 81 (4), 470-477, 2011 | 17 | 2011 |

A note on blow-up of a nonlinear integral equation A Pérez, J Villa Bulletin of the Belgian Mathematical Society-Simon Stevin 17 (5), 891-897, 2010 | 13 | 2010 |

Local time and Tanaka formula for a multitype Dawson–Watanabe superprocess JA López‐Mimbela, J Villa Morales Mathematische Nachrichten 279 (15), 1695-1708, 2006 | 13 | 2006 |

Subordinate semimetric spaces and fixed point theorems J Villa-Morales Journal of Mathematics 2018 (1), 7856594, 2018 | 11 | 2018 |

A fixed point theorem in the space of integrable functions and applications GJ de Cabral-García, K Baquero-Mariaca, J Villa-Morales Rendiconti del Circolo Matematico di Palermo Series 2 72 (1), 655-672, 2023 | 10 | 2023 |

Blow up of mild solutions of a system of partial differential equations with distinct fractional diffusions J Villa-Morales arXiv preprint arXiv:1208.4001, 2012 | 10 | 2012 |

Occupation measure and local time of classical risk processes ET Kolkovska, JA López-Mimbela, JV Morales Insurance: Mathematics and Economics 37 (3), 573-584, 2005 | 9 | 2005 |

Simple numerical method to study traveling‐wave solutions of a diffusive problem with nonlinear advection and reaction J Macias‐Diaz, J Villa Numerical Methods for Partial Differential Equations 29 (5), 1694-1708, 2013 | 8 | 2013 |

A generalization of Osgood's test and a comparison criterion for integral equations with noise MJ Ceballos-Lira, JE Macias-Diaz, J Villa arXiv preprint arXiv:1012.1843, 2010 | 8 | 2010 |

Super-brownian local time: A representation and two applications JA López-Mimbela, J Villa Journal of Mathematical Sciences 121 (5), 2653-2663, 2004 | 8 | 2004 |

Deflection of beams modeled by fractional differential equations J Villa-Morales, LJ Rodríguez-Esparza, M Ramírez-Aranda Fractal and Fractional 6 (11), 626, 2022 | 7 | 2022 |

On the distribution of explosion time of stochastic differential equations JA León, LP Hernández, J Villa-Morales arXiv preprint arXiv:1305.2870, 2013 | 7 | 2013 |

Finite-difference modeling à la Mickens of the distribution of the stopping time in a stochastic differential equation JE Macías-Díaz, J Villa-Morales Journal of Difference Equations and Applications 23 (4), 799-820, 2017 | 5 | 2017 |

An Osgood condition for a semilinear reaction–diffusion equation with time-dependent generator J Villa-Morales Arab Journal of Mathematical Sciences 22 (1), 86-95, 2016 | 5 | 2016 |

Critical dimension for a system of partial differential equations with time-dependent generators. A Carmen Andrade‐González, J Villa‐Morales Mathematical Methods in the Applied Sciences 38 (12), 2015 | 5 | 2015 |

On the Dirichlet problem J Villa-Morales Expositiones Mathematicae 30 (4), 406-411, 2012 | 5 | 2012 |