Follow
Matthias Rupp
Title
Cited by
Cited by
Year
Fast and accurate modeling of molecular atomization energies with machine learning
M Rupp, A Tkatchenko, KR Müller, OA Von Lilienfeld
Physical review letters 108 (5), 058301, 2012
24852012
Quantum chemistry structures and properties of 134 kilo molecules
R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld
Scientific data 1 (1), 1-7, 2014
20592014
Big data meets quantum chemistry approximations: the Δ-machine learning approach
R Ramakrishnan, PO Dral, M Rupp, OA Von Lilienfeld
Journal of chemical theory and computation 11 (5), 2087-2096, 2015
8652015
Machine learning of molecular electronic properties in chemical compound space
G Montavon, M Rupp, V Gobre, A Vazquez-Mayagoitia, K Hansen, ...
New Journal of Physics 15 (9), 095003, 2013
7942013
Assessment and validation of machine learning methods for predicting molecular atomization energies
K Hansen, G Montavon, F Biegler, S Fazli, M Rupp, M Scheffler, ...
Journal of chemical theory and computation 9 (8), 3404-3419, 2013
7152013
Finding density functionals with machine learning
JC Snyder, M Rupp, K Hansen, KR Müller, K Burke
Physical review letters 108 (25), 253002, 2012
6722012
Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information
I Sushko, S Novotarskyi, R Körner, AK Pandey, M Rupp, W Teetz, ...
Journal of computer-aided molecular design 25, 533-554, 2011
6512011
Machine learning for quantum mechanics in a nutshell
M Rupp
International Journal of Quantum Chemistry 115 (16), 1058-1073, 2015
4382015
Unified representation of molecules and crystals for machine learning
H Huo, M Rupp
Machine Learning: Science and Technology 3 (4), 045017, 2022
387*2022
DOGS: Reaction-Driven de novo Design of Bioactive Compounds
M Hartenfeller, H Zettl, M Walter, M Rupp, F Reisen, E Proschak, ...
PLoS computational biology 8 (2), e1002380, 2012
2622012
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
OA Von Lilienfeld, R Ramakrishnan, M Rupp, A Knoll
International Journal of Quantum Chemistry 115 (16), 1084-1093, 2015
2522015
Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
M Rupp, R Ramakrishnan, OA von Lilienfeld
Journal of Physical Chemistry Letters 6 (16), 3309-3313, 2015
2522015
Learning invariant representations of molecules for atomization energy prediction
G Montavon, K Hansen, S Fazli, M Rupp, F Biegler, A Ziehe, ...
Advances in neural information processing systems 25, 2012
2082012
Understanding machine‐learned density functionals
L Li, JC Snyder, IM Pelaschier, J Huang, UN Niranjan, P Duncan, M Rupp, ...
International Journal of Quantum Chemistry 116 (11), 819-833, 2016
2052016
Orbital-free bond breaking via machine learning
JC Snyder, M Rupp, K Hansen, L Blooston, KR Müller, K Burke
The Journal of chemical physics 139 (22), 2013
1432013
Identifying domains of applicability of machine learning models for materials science
C Sutton, M Boley, LM Ghiringhelli, M Rupp, J Vreeken, M Scheffler
Nature communications 11 (1), 4428, 2020
1372020
Machine-learned multi-system surrogate models for materials prediction
N Chandramouli, M Rupp, B Brayden, AV Shapeev, T Mueller, ...
npj Computational Materials 5 (1), 51, 2019
136*2019
Understanding kernel ridge regression: Common behaviors from simple functions to density functionals
K Vu, JC Snyder, L Li, M Rupp, BF Chen, T Khelif, KR Müller, K Burke
International Journal of Quantum Chemistry 115 (16), 1115-1128, 2015
1232015
Optimizing transition states via kernel-based machine learning
ZD Pozun, K Hansen, D Sheppard, M Rupp, KR Müller, G Henkelman
The Journal of chemical physics 136 (17), 2012
1222012
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
MF Langer, A Goeßmann, M Rupp
npj Computational Materials 8 (1), 41, 2022
1122022
The system can't perform the operation now. Try again later.
Articles 1–20