SIRT1 regulates circadian clock gene expression through PER2 deacetylation G Asher, D Gatfield, M Stratmann, H Reinke, C Dibner, F Kreppel, ... Cell 134 (2), 317-328, 2008 | 1528 | 2008 |
Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock G Asher, P Sassone-Corsi Cell 161 (1), 84-92, 2015 | 845 | 2015 |
Crosstalk between components of circadian and metabolic cycles in mammals G Asher, U Schibler Cell metabolism 13 (2), 125-137, 2011 | 690 | 2011 |
Crosstalk between metabolism and circadian clocks H Reinke, G Asher Nature Reviews Molecular Cell Biology 20 (4), 227-241, 2019 | 470 | 2019 |
A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73 G Asher, P Tsvetkov, C Kahana, Y Shaul Genes & development 19 (3), 316-321, 2005 | 432 | 2005 |
Poly (ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding G Asher, H Reinke, M Altmeyer, M Gutierrez-Arcelus, MO Hottiger, ... Cell 142 (6), 943-953, 2010 | 425 | 2010 |
Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides Y Adamovich, L Rousso-Noori, Z Zwighaft, A Neufeld-Cohen, M Golik, ... Cell metabolism 19 (2), 319-330, 2014 | 407 | 2014 |
Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1 G Asher, J Lotem, B Cohen, L Sachs, Y Shaul Proceedings of the National Academy of Sciences 98 (3), 1188-1193, 2001 | 406 | 2001 |
NQO1 stabilizes p53 through a distinct pathway G Asher, J Lotem, R Kama, L Sachs, Y Shaul Proceedings of the National Academy of Sciences 99 (5), 3099-3104, 2002 | 320 | 2002 |
Circadian clock control of liver metabolic functions H Reinke, G Asher Gastroenterology 150 (3), 574-580, 2016 | 282 | 2016 |
Rhythmic oxygen levels reset circadian clocks through HIF1α Y Adamovich, B Ladeuix, M Golik, MP Koeners, G Asher Cell metabolism 25 (1), 93-101, 2017 | 275 | 2017 |
Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1 G Asher, J Lotem, L Sachs, C Kahana, Y Shaul Proceedings of the National Academy of Sciences 99 (20), 13125-13130, 2002 | 273 | 2002 |
Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins A Neufeld-Cohen, MS Robles, R Aviram, G Manella, Y Adamovich, ... Proceedings of the National Academy of Sciences 113 (12), E1673-E1682, 2016 | 253 | 2016 |
20S proteasomes and protein degradation “by default” G Asher, N Reuven, Y Shaul Bioessays 28 (8), 844-849, 2006 | 253 | 2006 |
Guidelines for genome-scale analysis of biological rhythms ME Hughes, KC Abruzzi, R Allada, R Anafi, AB Arpat, G Asher, P Baldi, ... Journal of biological rhythms 32 (5), 380-393, 2017 | 245 | 2017 |
Transgenic mouse model for studying the transcriptional activity of the p53 protein: age‐and tissue‐dependent changes in radiation‐induced activation during embryogenesis E Gottlieb, R Haffner, A King, G Asher, P Gruss, P Lonai, M Oren The EMBO journal, 1997 | 209 | 1997 |
20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1 G Asher, Z Bercovich, P Tsvetkov, Y Shaul, C Kahana Molecular cell 17 (5), 645-655, 2005 | 197 | 2005 |
The crystal structure of NAD (P) H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol G Asher, O Dym, P Tsvetkov, J Adler, Y Shaul Biochemistry 45 (20), 6372-6378, 2006 | 187 | 2006 |
Inhibition of NAD (P) H: quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin P Tsvetkov, G Asher, V Reiss, Y Shaul, L Sachs, J Lotem Proceedings of the National Academy of Sciences 102 (15), 5535-5540, 2005 | 180 | 2005 |
Circadian clock control by polyamine levels through a mechanism that declines with age Z Zwighaft, R Aviram, M Shalev, L Rousso-Noori, J Kraut-Cohen, M Golik, ... Cell metabolism 22 (5), 874-885, 2015 | 152 | 2015 |