Folgen
Hanlin Niu
Hanlin Niu
Bestätigte E-Mail-Adresse bei manchester.ac.uk - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning
J Hu, H Niu, J Carrasco, B Lennox, F Arvin
IEEE Transactions on Vehicular Technology 69 (12), 14413-14423, 2020
4402020
Fault-Tolerant Cooperative Navigation of Networked UAV Swarms for Forest Fire Monitoring
J Hu, H Niu, J Carrasco, B Lennox, F Arvin
Aerospace Science and Technology 123, 107494, 2022
1232022
An energy-efficient path planning algorithm for unmanned surface vehicles
H Niu, Y Lu, A Savvaris, A Tsourdos
Ocean Engineering 161, 308-321, 2018
1182018
Design and experimental validation of deep reinforcement learning-based fast trajectory planning and control for mobile robot in unknown environment
R Chai, H Niu, J Carrasco, F Arvin, H Yin, B Lennox
IEEE Transactions on Neural Networks and Learning Systems 35 (4), 5778-5792, 2022
1172022
Energy efficient path planning for unmanned surface vehicle in spatially-temporally variant environment
H Niu, Z Ji, A Savvaris, A Tsourdos
Ocean Engineering 196, 106766, 2020
812020
Voronoi-visibility roadmap-based path planning algorithm for unmanned surface vehicles
H Niu, A Savvaris, A Tsourdos, Z Ji
The Journal of Navigation 72 (4), 850-874, 2019
742019
Efficient path planning algorithms for unmanned surface vehicle
H Niu, Y Lu, A Savvaris, A Tsourdos
IFAC-PapersOnLine 49 (23), 121-126, 2016
582016
Development of collision avoidance algorithms for the c-enduro usv
A Savvaris, H Niu, H Oh, A Tsourdos
IFAC Proceedings Volumes 47 (3), 12174-12181, 2014
522014
Bio-inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning
S Na, H Niu, B Lennox, F Arvin
IEEE Transactions on Vehicular Technology 71 (3), 2511-2526, 2022
452022
Accelerated sim-to-real deep reinforcement learning: Learning collision avoidance from human player
H Niu, Z Ji, F Arvin, B Lennox, H Yin, J Carrasco
2021 IEEE/SICE International Symposium on System Integration (SII), 144-149, 2021
442021
Efficient path following algorithm for unmanned surface vehicle
H Niu, Y Lu, A Savvaris, A Tsourdos
OCEANS 2016-Shanghai, 1-7, 2016
322016
Distributed neural networks training for robotic manipulation with consensus algorithm
W Liu, H Niu, I Jang, G Herrmann, J Carrasco
IEEE transactions on neural networks and learning systems 35 (2), 2732 - 2746, 2022
172022
Design, integration and sea trials of 3D printed unmanned aerial vehicle and unmanned surface vehicle for cooperative missions
H Niu, Z Ji, P Liguori, H Yin, J Carrasco
2021 IEEE/SICE International Symposium on System Integration (SII), 590-591, 2021
162021
Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking
Y Lu, H Niu, A Savvaris, A Tsourdos
IFAC-PapersOnLine 49 (23), 127-132, 2016
162016
3d vision-guided pick-and-place using kuka lbr iiwa robot
H Niu, Z Ji, Z Zhu, H Yin, J Carrasco
2021 IEEE/SICE International Symposium on System Integration (SII), 592-593, 2021
142021
A model-free deep reinforcement learning approach for robotic manipulators path planning
W Liu, H Niu, MN Mahyuddin, G Herrmann, J Carrasco
2021 21st International Conference on Control, Automation and Systems (ICCAS …, 2021
132021
Virtual Kinesthetic Teaching for Bimanual Telemanipulation
I Jang, H Niu, E C.Collins, A Weightman, J Carrasco, B Lennox
2021 IEEE/SICE International Symposium on System Integration (SII), 120-125, 2021
122021
USV geometric collision avoidance algorithm for multiple marine vehicles
H Niu, A Savvaris, A Tsourdos
OCEANS 2017-Anchorage, 1-10, 2017
92017
Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-based Approach
W Liu, H Niu, W Pan, G Herrmann, J Carrasco
IEEE International Conference on Robotics and Automation (ICRA), 2023
72023
Universal artificial pheromone framework with deep reinforcement learning for robotic systems
S Na, H Niu, B Lennox, F Arvin
2021 6th international conference on control and robotics engineering (ICCRE …, 2021
72021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20