Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM C Carstensen, S Bartels Mathematics of Computation 71 (239), 945-969, 2002 | 249 | 2002 |
Numerical methods for nonlinear partial differential equations S Bartels Springer, 2015 | 233 | 2015 |
Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation S Bartels, A Prohl SIAM journal on numerical analysis 44 (4), 1405-1419, 2006 | 135 | 2006 |
Effective relaxation for microstructure simulations: algorithms and applications S Bartels, C Carstensen, K Hackl, U Hoppe Computer Methods in Applied Mechanics and Engineering 193 (48-51), 5143-5175, 2004 | 121 | 2004 |
Averaging techniques yield reliable a posteriori finite element error control for obstacle problems S Bartels, C Carstensen Numerische Mathematik 99, 225-249, 2004 | 112 | 2004 |
A posteriori error estimates for nonconforming finite element methods C Carstensen, S Bartels, S Jansche Numerische Mathematik 92 (2), 233-256, 2002 | 112 | 2002 |
Stability and convergence of finite-element approximation schemes for harmonic maps S Bartels SIAM journal on numerical analysis 43 (1), 220-238, 2005 | 108 | 2005 |
Total variation minimization with finite elements: convergence and iterative solution S Bartels SIAM Journal on Numerical Analysis 50 (3), 1162-1180, 2012 | 100 | 2012 |
Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis S Bartels, C Carstensen, G Dolzmann Numerische Mathematik 99, 1-24, 2004 | 95 | 2004 |
Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM S Bartels, C Carstensen Mathematics of computation 71 (239), 971-994, 2002 | 93 | 2002 |
Spectral approximation of fractional PDEs in image processing and phase field modeling H Antil, S Bartels Computational Methods in Applied Mathematics 17 (4), 661-678, 2017 | 92 | 2017 |
Numerical approximation of partial differential equations S Bartels Springer, 2016 | 84 | 2016 |
Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation S Bartels, J Ko, A Prohl Mathematics of Computation 77 (262), 773-788, 2008 | 77 | 2008 |
Bilayer Plates: Model Reduction, Γ‐Convergent Finite Element Approximation, and Discrete Gradient Flow S Bartels, A Bonito, RH Nochetto Communications on Pure and Applied Mathematics 70 (3), 547-589, 2017 | 63 | 2017 |
Constraint preserving implicit finite element discretization of harmonic map flow into spheres S Bartels, A Prohl Mathematics of computation 76 (260), 1847-1859, 2007 | 63 | 2007 |
Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion S Bartels, T Roubíček ESAIM: Mathematical Modelling and Numerical Analysis 45 (3), 477-504, 2011 | 62 | 2011 |
A posteriori error analysis for time-dependent Ginzburg-Landau type equations S Bartels Numerische Mathematik 99, 557-583, 2005 | 60 | 2005 |
Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes S Bartels, R Müller, C Ortner SIAM journal on numerical analysis 49 (1), 110-134, 2011 | 58 | 2011 |
A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation L Baňas, S Bartels, A Prohl SIAM journal on numerical analysis 46 (3), 1399-1422, 2008 | 55 | 2008 |
Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation S Bartels, A Mielke, T Roubíček SIAM Journal on Numerical Analysis 50 (2), 951-976, 2012 | 50 | 2012 |