Folgen
T R Carr
T R Carr
Bestätigte E-Mail-Adresse bei mail.wvu.edu
Titel
Zitiert von
Zitiert von
Jahr
Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin
G Wang, TR Carr
AAPG bulletin 97 (12), 2173-2205, 2013
2502013
Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian basin
G Wang, TR Carr
Computers & Geosciences 49, 151-163, 2012
2172012
Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin
G Wang, TR Carr, Y Ju, C Li
Computers & Geosciences 64, 52-60, 2014
1612014
Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA
S Bhattacharya, TR Carr, M Pal
Journal of Natural Gas Science and Engineering 33, 1119-1133, 2016
1582016
Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas
L Qi, TR Carr
Computers & Geosciences 32 (7), 947-964, 2006
1372006
Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal-to open-marine reservoir, Morrow Sandstone, subsurface of southwest …
LA Buatois, MG Mángano, A Alissa, TR Carr
Sedimentary Geology 152 (1-2), 99-132, 2002
1202002
Log-linear models, Markov chains and cyclic sedimentation
TR Carr
Journal of Sedimentary Research 52 (3), 905-912, 1982
1041982
Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA
Z Zhong, TR Carr, X Wu, G Wang
Geophysics 84 (6), B363-B373, 2019
962019
Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin
G Wang, TR Carr
Mathematical Geosciences 44, 975-1004, 2012
952012
Application of mixed kernels function (MKF) based support vector regression model (SVR) for CO2–Reservoir oil minimum miscibility pressure prediction
Z Zhong, TR Carr
Fuel 184, 590-603, 2016
892016
Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales
MA Borton, DW Hoyt, S Roux, RA Daly, SA Welch, CD Nicora, S Purvine, ...
Proceedings of the National Academy of Sciences 115 (28), E6585-E6594, 2018
872018
Early Triassic stratigraphy and paleogeography of the Cordilleran miogeocline
TR Carr, RK Paull
Rocky Mountain Section (SEPM), 1983
841983
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
L Qi, TR Carr, RH Goldstein
AAPG bulletin 91 (1), 69-96, 2007
812007
Dynamics of taxonomic diversity
TR Carr, JA Kitchell
Paleobiology 6 (4), 427-443, 1980
811980
The geology of Kansas—Arbuckle Group
EK Franseen, AP Byrnes, JR Cansler, DM Steinhauff, TR Carr
Current Research in Earth Sciences, 1-43, 2004
752004
Application of predictive data analytics to model daily hydrocarbon production using petrophysical, geomechanical, fiber-optic, completions, and surface data: A case study from …
S Bhattacharya, PK Ghahfarokhi, TR Carr, S Pantaleone
Journal of Petroleum Science and Engineering 176, 702-715, 2019
742019
Sedimentology and ichnology of Paleozoic estuarine and shoreface reservoirs, Morrow Sandstone, Lower Pennsylvanian of southwest Kansas, USA
LA Buatois, GM Mangano, TR Carr
Current Research in Earth Sciences, 1-35, 1999
671999
Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content
L Song, K Martin, TR Carr, PK Ghahfarokhi
Fuel 241, 1036-1044, 2019
582019
Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO2 sequestration in Kansas
TR Carr, DF Merriam, JD Bartley
AAPG bulletin 89 (12), 1607-1627, 2005
572005
Nonequilibrium model of diversification: faunal turnover dynamics
JA Kitchell, TR Carr, JW Valentine
Phanerozoic diversity patterns: profiles in macroevolution. Princeton …, 1985
561985
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20